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Abstract 

Basic definitions of neural networks are given in terms of oriented graphs. Partial 
derivatives of an objective function with respect to the weight and threshold coefficients 
are derived. These derivatives are very important for the adaptation process, carried out 
by a version of the gradient method of the neural network considered, The stability of 
the adapted neural network toward small changes - "perturbation" - of input activities 
is described by sensitivities. The theory is illustrated by application of simple neural 
networks that reflect the topology of molecules to the classification of 13C NMR chemical 
shifts of secondary carbons in acyclic alkanes. 

1. Introduction 

Neural networks [1-3] are computer-modeled or algorithmic systems derived 
from a simplified concept of  the brain. In a neurN network, a number of  nodes, called 
neurons, are interconnected into a net-like structure. A network is constructed with 
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Fig. 1. Plot of a 5-layer neural network represented by an acyclic 
oriented graph composed of 14 vertices and 17 oriented edges. 

three or more layers of  neurons: input neurons, output neurons, and often one or more 
layers of  intermediate elements called the hidden neurons (see fig. 1). 
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Each neuron receives input signals via one-way connections from preceding 
neurons, and each input is weighted by a variable weight parameter. If the sum of 
weighted inputs to a neuron exceeds a certain threshold coefficient, the neuron will 
send a signal to another neuron located in the juxtaposed higher layer. 

Unlike conventional computers, neural networks are parallel in their structure 
and in the way they process information. The structure of the network, in particular 
the number of  layers and the distribution of neurons among layers, is adjusted so that 
it is appropriate for the problem under study. The network is then put through a 
training (adaptation) process in which the weight and threshold coefficients are modified 
recursively by a learning algorithm, based on a "training set" of  known data, until 
the weights and thresholds converge to fixed values. Assuming that the adaptation 
process was finished successfully, the formed network can be used to solve new 
problems in a so-called active process. Unlike the standard computer (Von Neumann's 
concept of  the computer), knowledge is represented in a neural network in a parallel 
fashion in terms of weight and threshold coefficients distributed throughout the system. 

The advantages of neural networks over conventional algorithms include 
(1) their self-learning feature, and (2) the ability to generalize. However, there are 
also a number of disadvantages. In particular, neural networks (1) are poor at 
mathematics, (2) sometimes fai l  to give the correct answer, and (3) cannot explain 
their predictions. 

Neural networks do give incorrect answers, especially when they have been 
"trained" in a configuration with inappropriate weight and threshold coefficients from 
which they cannot escape or, more frequently, when they have been set up incorrectly. 
There may be a wrong assignment between the number of neurons in the network and 
the number of identifiable patterns in the data set. Another possible reason for failure 
may be an insufficient number of trials in the training process. 

Neural networks are not a new "technology" [4]. The crucial point in this field 
is the concept of  perceptron [5], widely used for many learning and pattern recognition 
algorithms. This concept was the subject of  serious criticism [6], directed especially 
against its inability to solve certain more complex types of problems. The field of 
neural networks has seen a revival [7] in the 1980's, alter it was realised that this 
criticism was only relevant to a very simple type of neural networks - perceptrons. 

Applications of neural networks to chemistry have just begun to emerge [8]. 
The early ones [9, 10] touch the problem of prediction of three-dimensional protein 
structure from data on amino acids. Chemical and Engineering News [8] reported a 
short review communication on a few initial applications of neural networks in 
organic chemistry, in particular, the distribution of products of nitration in a series 
of monosubstituted benzenes and the prediction of adverse drug effects. Recently, we 
have published [11] a preliminary communication on the application of  a standard 3- 
layer neural network applicable to the classification of 13C NMR chemical shifts of 
acyclic alkanes. 

The purpose of the present communication is to suggest and elaborate a graph- 
theoretical formulation of neural networks that are appropriate for acyclic molecular 



V. Kvasni&a, Neural networks 65 

graphs, explicitly accounting for their topology. The theory will be illustrated by the 
evaluation of  13C NMR chemical shifts of secondary carbon atoms in acyclic 
hydrocarbons. 

2. Neural  ne tworks  

In general, a neural network is determined as an oriented graph [12] 

G = (V, E), (1) 

where V = {v~, v 2 . . . . .  VN} is a nonempty set composed of N vertices - neurons 
v i , v 2 . . . . .  v N. The set E = {e~, e 2 . . . . .  eM} is composed of M edges - connections 
e~, e= . . . . .  em. Each connection e ~ E is formally interpreted (with respect to the set 
V) as an ordered pair of two distinct neurons v, v' ~ V, e = [v, v']. We say that the 
connection e = [v, v'] is outgoing from the neuron v and incoming to the neuron v'. 
We shall postulate that the graph G is acyclic and does not contain multiedges. The 
neurons of V are unambiguously classified as 

(1) input neurons, incident only with outgoing connections, 

(2) output neurons, incident only with incoming connections, 

and 

(3) hidden neurons, incident at least with one incoming connection and one outgoing 
connection. 

This means that the set V may be divided into three disjoint subsets V I, V o, and V H 
that are composed of input, output, and hidden neurons, respectively, 

V =  V 1 U ~ o U v  H. (2) 

In our forthcoming considerations, we shall always assume that the subset V~ is 
nonempty, i.e. the neural network has at least one hidden neuron. 

Another alternative way [13] to determine the oriented graph G consists of  the 
mapping F which assigns to each neuron v e V a subset F(v) _c V. Let v'  ~ F(v)  be 
a neuron from the subset F(v); then the ordered pair [v, v'] is an oriented connection 
of  G. The subset F(v)  is composed of  the so-called successors" of neuron v in 
graph G. An "inverse" mapping F -~ assigns to each v e V a subset F-l(v) _c V composed 
of  the so-called predecessors of neuron v in graph G. In other words, if v '  ~ F-l(v),  
then the ordered pair [v', v] is an oriented connection of G. Using these two mappings 
F and F -~, the above classification of neurons and the corresponding decomposition 
(2) of  the set V may be done alternatively as 

V t = {v~  V, F ( v ) : x O  and F-1(v) = @}, (3a) 
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V o = { r e  V; F(v) = ~ and F-l(v) ~:D},  (3b) 

!~qt = { r e  V; F(v) ~: O and F-l(v) :~ ~ } ,  (3c) 

where the symbol O denotes the empty subset. 
The decomposition (2) of  V into three disjoint subsets corresponding to input, 

output, mad hidden neurons may be more deeply specified in terms of the so-called 
layers. First, we have to introduce the notion of  distance d(v) between a neuron 
v e Iq~ and the input neurons from the subset V I. This distance is determined as the 
length of the longest oriented path connecting the neuron v ~ V~ with an input neuron 
from V I. Then, the subset V n is divided into (p - 2) disjoint subsets called the layers, 

V n = L 2 w L  3U w L  (4a) 
• . . p _ l  ~ 

L i = { r e  Vit; d(v) = i -  1}, (4b) 

where the positive integer p - 2 corresponds to the maximal distance between hidden 
neurons and input neurons. Setting L = V o (output layer) and L~ = V I (input layer), 
we obtain the lbllowing decomposition of V in the layers: 

V = L l w L 2 w . . . w L p  1 u L  . (5) 
P 

If two neurons v, v '  ~ V are linked by an oriented connection [v, v'] ~ E, then 
v E L i, v '  E L i , ,  where 1 < i < i' < p; i.e. neuron v" should belong to a higher layer 
than neuron v. In other words, the neural network may be understood as a hierarchically 
(horizontally) structured oriented graph, in which going from the bottom to the top 
one first strikes the input layer L 1, then success ive ly  the hidden layers 
L 2, L 3 . . . . .  L _  1, and finally, at the top, the output layer L .  

Finally, to establish the definition of the neural network in terms of  the oriented 
(acyclic) graph G, we introduce two evaluations of its connections and neurons that 
are carried out by mappings (p and gt. The mapping 

q) : E -~, /R (6a) 

evaluates each connection of G by a real number (/R is the set of real numbers) called 
the weight coefficient. Let e = [4 '  v.] ~ E be a connection of G; then the weight 
coefficient assigned to this connection is denoted by w. i, 

q~([~, v.]) = wji. (6b) 

The mapping 

~/" ~ w ~ ~ /R (7a) 
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assigns to each hidden or output neuron a real number called the threshold coefficient, 

gt(vi) = 0/, (7b) 

where v ie  V u U V o. 
In summary, the neural network is graph-theoretically determined by an oriented 

acyclic graph (without multiedges) with connections evaluated by weight coefficients, 
hidden and output neurons evaluated by threshold coefficients. For simplicity and to 
avoid some formal difficulties, we shall assume that the neurons are indexed in such 
a way that input neurons come first, followed by hidden neurons, and finally output 
neurons. This convention means that the set V may be formally put equal to a set 
{1,2 . . . . .  N}, where N is the number of  neurons in G. Let N I ,N n, and N o be the 
numbers of  input, hidden, and output neurons, respectively (N = N I + N n + No); then 

V I = {1,2 . . . . .  Ni}, 

V n = {N I + 1,N 1 + 2 . . . . .  N l + Nn}, 

V O = {N! + Nil + 1,N I + NII+ 2 . . . . .  N}. 

(8a) 

(8b) 

(8c) 

The neurons of G are additionally evaluated by the so-called activities, i.e. we 
assign to each v. ~ V its activity, denoted by x i. We shall postulate that the activities 
of  input neurons remain constant, while for hidden and output neurons they are 
calculated recurrently by 

x i = f (  E WijXj+1~i) ' (9) 
jE F-I(i) 

for each i e  L k, where the index k is successively increased from 2 to p (i.e. 
k = 2, 3 . . . . .  p). The summation runs over all indices of the subset F-I(i) assigned 
to the neuron indexed by i. These activities constitute the so-called state vector 
x = (xl ,x  2 . . . . .  XN). The transfer function f ( { )  is a positive and monotonically 
increasing function which fulfills asymptotic conditions f ( { )  --> 1 as { -+ ,,o and 

f ( { )  --) 0 as { --+ _oo. For instance, these requirements are simply met if the transfer 
function f ( ~ )  is given as 

1 
f ( { )  - (10) 

1 + e x p ( - { )  ' 

its first derivative being determined by f ' ( { )  = f ( { ) [ 1  - f ( { ) ] .  As was already 
mentioned, activities of  input neurons are kept fixed in the course of  recurrent 
calculation of  all other activities. Going successively from layer L 2 to higher layers 
L 3, L 4 . . . .  L we calculate first the activities of the hidden neurons and then, finally, 
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the activities of  the output neurons. For fixed weight and threshold coefficients and 
prescribed activities of input neurons, such a successive calculation of the activities 
assigned to hidden and output neurons is called the active process  of the neural 
network. In a similar fashion as in (2), the state vector x may be formally divided 
into three subvectors that are composed of input, hidden, and output activities, 

x =  x I O x  H O x  o, (11) 

where 

X I = (X 1 ,x2  . . . .  ,XNt) ,  (12a) 

XIf = (XNI+I,XNI+2 . . . . .  XNI+NIt), (12b) 

X 0 = (XNI+NII+I,XNI+NH+2 . . . .  ,XN) .  (12c) 

In general, the neural network with fixed weight and threshold coefficients may 
be formally considered as a mapping 

F " /12 N' --+ (0, 1 )No, (13a) 

which assigns to an input state vector x I an output state vector x o, 

X O = F(XI). (13b) 

The hidden activities should not be explicitly displayed in this formula; they play only 
the role of  intermediate results that are temporarily emerging in file recurrent calculation 
of  the output activities. An explicit analytical form of the mapping F is easily 
constructed by successive use of (9) and (10). 

Let us now concentrate on the so-called adaptation (learning) process  of a 
neural network. For a prescribed pair x~/,2 o of input and output state vectors, we try 
to find such weight and threshold coefficients that the actual neural-network response 
x o on the prescribed input state vector x~ would be "closely related" to the prescribed 
output state vector x o. There exist several possible ways [3] to achieve the above- 
mentioned vague "close relatmnshq9 . One of  them is to minimize the objective 
func t ion  

1 1 
E =  ~ ( X O - ~ ' O ) 2 =  ~- Z ( X k - - X k ) 2 '  (14)  

k~ Lp 

where x~'s are entries of "~o" This means that the goal of  our adaptation process is 
to find such weight and threshold coefficients so as to minimize the objective function 
E. The so-called back-propagat ion strategy [3] of the adaptation process involves 
successive calculation of partial derivatives ~)E/Ow,, and 3 E / 3 0  i in going from the top 
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output layer to the bottom input layer. In order to calculate these partial derivatives, 
we have to know, first of all, the partial derivatives Oxk/Owi~ and Ox~:/O~, for each 
k e L - V o. After simple but tedious manipulations, we obtain 

OXk 
OOj - a j k x k ( 1 - x k ) ,  (15a) 

axk ( Oxk ) 
Ova / - t~r~'.{o)Owtj wtj ( 1 - x j ) ,  (15b) 

OXk OXk 
= - -  x i ,  (15c) 

O w j i a O i 

where the symbol ~k corresponds to Kronecker's delta, ~k = 1 for j = k and ~k = 0 
for j  ;e k. The first formula (15a) is satisfied for each j  ~ V o - L ,  whereas }Lhe second 
and third formulae are satisfied for each j ~ L t and t = p - 1, p - 2 . . . . .  2, and the 
index i in (15c) fulfills i e F I ( j  ). The partial derivatives of the objective function 
E determined by (14) are 

Ox----L, (16 a) ae -  (xk-x )awji 
OWji k ~ Lp 

OXk 
a e  - ( x k - x k )  o-- j " 
015tj keLp 

(16b) 

Introducing (15a-c) into (16a-b), we obtain the final formulae for the first partial 
derivatives of the objective function E, 

OE 
- ( x )  - xj  )xj ( 1 - xj ), (17 a) 

o 

O'Oj le j) OWlj 
(17b) 

OE OE 
awi,, OOj 

- -  x i ,  (17c) 

with identical constraints on the indices i and j as in (15a-c). We see that, going 
step-by-step from the top to the bottom of the neural network, we can calculate 
successively the partial derivatives c)E/Owj~ and O E / ~  by applying these formulae. 

The partial derivatives (17a-c) are useful in that they minimize the objective 
function E by making use of a version of the well-known gradient method [14]. In 
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our actual applications, the variable metric method [14,15] perfomas satisfactorily 
when the zero-step initial values of weight and threshold coefficients are randomly 
generated from the open interval ( - 1 ,  1). 

The above adaptation process of the neural network may be simply generalized 
also for more than one pair of prescribed input/output state vectors xi/x o, i.e. for q 
pairs of state vectors --Ir(1)/~(1)'"O ' --Ir(2)/r(2)'--O . . . . .  Xl(q)/x(fq). Then the objective function is 
determined by 

q 

E= ~ E (i), (18a) 
i = 1  

= 2 [ " ~ O  - -  J , ( 1 8 b )  

where Xo(° is the output state vector of the neural network corresponding to the 
prescribed ith input state vector x~ ° and x(~) the required (expected) response of the 
neural network assigned to x l °  The partial derivatives of E are then equal to the sum 
of the partial derivatives of E (° evaluated by (17a-c). 

In order to obtain a deeper insight into an adapted neural network (i.e. the 
weight and threshold coefficients are already chosen), we introduce the so-called 
sensitivities of the neural network. Let us assume that a given input state vector x~ 
is changed as x~ --> x~ + Axe, where the "perturbation" AXl is composed of entries that 
are of first-order smallness with respect to entries of x~. Then the hidden and output 
entries of the state vector x are also changed as x -~ x + Ax. The hidden and output 
entries of kx  correspond to the response of the neural network to the "perturbation" 
Ax r When going successively from the second layer to higher layers, we may trace 
the propagation of the input "perturbation" zXx~ throughout the whole neural network. 
The hidden and output entries of Ax am well approximated (up to first order) by 

Oxi 
kxi -~ ~ ~ Axj, (19) 

je Vl 

for i e V n u V o. The partial derivatives S~; = 3xi/Ox; are called the sensitivities of the 
neural network. These entities are simply calculable from (9-10),  

Sij = x i (1 -x i )  ~ wi~Skj, (20) 
k ~ F-1(0 

lbr i ~ V u u V o and j e V I. Entries S~j = ak~ if both indices k,j ~ V I. The sensitivities, 
loosely speaking, are interpreted as tollows: if entries S:/have "relatively" very small 
numerical values, then the state vector x is "relatively" insensitive to the "perturbation" 
Axe; increasing values of Si] indicate a greater sensitivity of the neural network to Axe, 
i.e. a small change in the input state vector x~ may cause a considerable change in 
some hidden and output entries of the state vector x. 
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3. Application 

The theory of neural networks, outlined in the first part of this communication, 
will be illustrated by a special tree-like network used as a classifier of t3C NMR 
chemical shifts of  secondary carbon atoms in acyclic alkanes [16]. The physical 
phenomenon of chemical shifts represents a property well locNized on atoms and 
influenced by other atoms from their environments mainly through the chemical 
bonds. This observation makes it possible to construct a neural network which will 
evaluate the ~3C NMR chemical shifts in a form closely related to the topology  of the 
studied molecular systems. The form of the neural network used is displayed 
in fig. 2. It is composed of  27 neurons and 6 layers, and each neuron (except 
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Fig. 2. Neural network used as a classifier of 13C NMR chemical 
shifts of secondary carbons in acyclic alkanes. The activity of the output 
neuron (indexed by 27) is adapted such that it corresponds to the chernical 
shift of a classified secondary carbon atom. The dichotornic (0 or 1) input 
activities (i.e. descriptors) determine tile topology of the classified molecule. 

for the output neuron) has only one successor (i.e. for each v e V~ u V H we 
have IF (v )1=  1). The dichotomic input activities x i ( f o r / =  1 . . . . .  12) specify 
the topology of classified molecules (cf. fig. 3 and table 1). If x i = 1, then the 
edge [i, F(i)] belongs to a subgraph ot' the neural network isomorphic to the 
classified molecule; in the opposite case (i.e. xi = 0), this edge does not belong to 
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Fig. 3. Acyclic alk~mes with secondary carbon atom (heavy dot). These 
molecules are graph-theoretically represented by rooted trees. The alkanes 
indexed 1 to 7 form the training set for the adaptation process of the 
neural network in fig. 1. The remaining alkanes (indexed 8 to 21) are 
used in the active process of the adapted neural network. 

the subgraph. Examples of input activities of an alkane are given in fig. 4 and 
table 2. The training set is composed of 40 objects - subgraphs which are assigned 
to the first 7 alkanes in tlg. 3. 
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Table 1 

13C NMR chemical shifts of secondary carbons in acyclic alkanes (a) 

No. 6exp(b) 6ine (~) 6 (a) No. ~xp ~' 6 
n n  l n ¢  n i l  

1 16.3 15.9 17.5 
2 24.9 25.3 25.9 
3 22.2 22.8 22.4 
4 34.1 34.7 34.2 
5 31.6 32.2 31.6 
6 22.7 23.1 22.7 
7 31.7 32.2 31.6 

8 41.9 41.6 40.9 
9 20.8 20.3 19.6 

10 36.1 36.6 34.3 
11 29.4 29.7 30.2 

12 32.0 32.5 32.0 
13 29.0 29.7 29.1 
14 38.9 39.1 38.3 
15 29.7 29.7 28.8 
16 29.5 29.4 30.4 
17 39.0 39.1 39.5 
18 20.2 20.6 19.9 

19 47.3 46.0 43.6 
20 26.8 27.2 28.4 
21 49.0 48.5 47.6 

(~)The experimental values of chemical shifts are taken from ref. [16]. 
(b;The dashed line separates the chemical shifts that correspond to an object (secondary carbon 

atoms) from the training set. 
(c)Chemical shifts calculated by an empirical incremental scheme [17]. 
(d)Chemical shifts produced by file neural network. 

,° < ' °  
21 21 21 

22 22 
23 23 

24 z4 24 

(1) (2) (3) 

19 19 19 q0 
21 21 21 

22 22 22 
23 23 23 
24 24 24 

(41 (5) (6) 

Fig. 4. Illustrative example of coding of acyclic alkanes with secondary carbons 
by the neural network in fig. 2. In general, what we are looking for in the neural 
network are all possible subgraphs of the classified alkane such that the secondary 
carbon (heavy dot) is superimposed on the output neuron. For instance, the 
alkane placed at the top of the figure has six distinct subgraphs in the neural 
network, where the network is, for simplicity, represented by its top 3 layers. 
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Table 2 

Examples  of  input activities (descriptors) o f  the alkane indexed  by 19 in fig. 3. 

No. 1 2 3 4 5 6 7 8 9 10 11 12 

l l l 1 1 0 0 0 0 0 0 0 0 
2 1 l l 0 l 0 0 0 0 0 0 0 
3 1 l 1 0 0 l 0 0 0 0 0 0 
4 1 0 0 1 1 1 0 0 0 0 0 0 
5 0 1 0 1 1 1 0 0 0 0 0 0 
6 0 0 1 1 1 1 0 0 0 0 0 0 

The output activity, corresponding to the chemical shift, is a real entry from 
the open interval (0, 1). Here, we have to specify more precisely the actual meaning 
of the concept of output activity assigned to chemical shifts of carbon atoms. As 
follows from (10), the transfer function f maps the set/17 of real numbers onto the 
open interval (0, 1), i.e.f:/17 --+ (0, 1). This means that the entries of  the output state 
vector x o belong merely to the interval (0, 1). That is, the required output vector "to 
should also be composed merely of real numbers from the open interval (0, 1). Since 
the chemical shifts of  carbon atoms are, say, ranged within 5 < ~ < 50, this interval 
should be compressed by an analog of (10) to a subinterval of (0, 1). Such a mapping 
was, in our studies, realized by 

1 
y = g(x)  = (21a) 

1 + exp( -ax  - b) ' 

where constants a and b are determined as follows: 

A m i  n - A r e a  x 
a = , b = -a.~Jmi n - A m i  n , (21b) 

Xmi n -- Xma x 

Ymin Ymax 
Ami n = In , Amax = In (21c) 

1 - - Y m i n  l - Y m a x  

The entries x ~  n and Xma x correspond to minimal and maximal values, respectively, 
of  the chemical shifts (in our case, we set x . = 5 and x = 50), whereas the entries 

rain max 
Ymin and Yma× are  minimal and maximal values of the "compressed" chemical shifts 
(we assign Ym~,, = 0.05 and Yma~ = 0.95); for these actual values of  minimal and 
maximal entries, the constants a and b are a = 0.1308640 and b = -3.5987588.  An 
inverse translormation of  (21a) is 

1 (  Y b ) .  (22) x =  g - l ( Y ) =  a In l - y  
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This function is used for the "back" transformation of output activities of the neural 
network to the actual chemical shifts. 

The optimal values of weight and threshold coefficients resulting from the 
adaptation process are listed in table 3. The values of chemical shifts evaluated by 
the adapted neural network are given in table 1. Simple inspection of these results 

T a b l e  3 

O p t i m a l  v a l u e s  o f  w e i g h t  an d  t h r e s h o l d  c o e f f i c i e n t s *  

W e i g h t  c o e f f i c i e n t s  

W1,19 = - -  1 .603 W2,20 = 2 ,2 82  

w5,23 = 2 ,282  W6,24 = 2 .2 82  

W9,17 = -- 2 .327  Wl0,18 = 1 ,254 

W13,15 = 0 , 9 5 4  wla,18 = 0 .9 54  

w17,24 = - 1 ,047 w18,24 = 1 .964 

w21,25 = 2 .886  w22.26 = 2 ,8 86  

w25,27 = 3 . 4 7 4  W26,27 = 3 ,47 4  

W3,21 = 2 . 2 8 2  

W7,15 = 1 ,254 

W11,13 = -- 0 . 9 1 9  

Wls. l  9 = 1 .964  

W19,25 = -- 3 . 869  

W23,26 = 2 .886  

W4,22 = 2 . 2 8 2  

W8,16 = -- 2 . 3 2 7  

W12,14 = 0 . 9 1 9  

WI6,19 = -- 1 .047  

W20,25 = 2 . 8 8 6  

W24,26 = 3 . 8 6 9  

T h r e s h o l d  c o e f f i c i e n t s  

t913 = 0 ,004  014 = 0 .00 4  015 = 0 .077  016 = 0 . 0 5 4  

017 = 0 ,054  018 = 0 .077  019 = 0 ,075  020 = -  0 .901  

t921 = - 0 .901  022 = - 0 .901 023 = - 0 .901  024 = 0 .075  

025 = 0 .037  026 = 0 ,037  027 = - 3 ,487  

* V a l u e  o f  o b j e c t i v e  f u n c t i o n  E = 1 ,842 x 10 -4.  

allows one to conclude that the used neural network provides chemical shifts that are 
closely related to their experimental values. For completeness, the chemical shifts 
calculated empirically by an incremental scheme [17] are also given in table 1. 

4. Discussion 

We have demonstrated that the approach of neural networks offers a simple 
novel tool potentially well suited for the classification of molecular properties. The 
present form of neural networks - an oriented acyclic graph - provides a very 
effective computational device for the classification of physical or physico-chemical 
properties that are well localized on single atoms and influenced by their environments 
through the chemical bonds. The suggested theory of neural networks is based on the 
assumption that the "information flow" is carried out through those connections that 
form a subgraph isomorphic to the classified molecular object. In the present 
communication, we have illustrated the theory on acyclic alkanes classified with 
respect to the 13C NMR chemical shifts of secondary carbon atoms. The results 
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obtained by other authors [8-10] and also the results presented here indicate that 
neural networks can give valuable predictions. Neural network approaches do not 
replace other forms of computing predictions, but they promise to be a useful alternative 
tool for computationally approaching problems that would not be satisfactorily solved 
by standard numerical methods. 

The present theory of neural networks may be simply and straightforwardly 
generalized for molecules involving also multiple bonds and heteroatoms. Our 
preliminary results and experience [18] indicate that this enlarged neural-network 
approach offers, for classes of structurally similar molecules, a very effective computing 
tool for the classification of molecular systems with respect to a preselected physical 
property. The neural networks program, written in PASCAL for IBM PC/AT 
compatibles, is available on request. 
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